

Topics

- Types of Angles
- Angle Facts
- Rotational Symmetry
- Congruency & Similarity
- Area & Perimeter
- Pythagoras' Theorem

- Area & Circumference of Circles
- 3D shapes
- Surface Area & Volume
- Converting Length Measurements
- Converting Compound Measures
- Metric & Imperial Conversions

Types of Angles

Angle Facts

 $74^{\circ} + 20 = 94$ 180 - 94 = 86 $74^{\circ} + 120 = 194$ $166^{\circ} + 360 - 194 = 166$ add to 180° .

Angles on a straight line add to 180°.

Angles around a point add to 360°.

Opposite angles are equal.

Angle Facts

Angles in a quadrilateral add to 360°.

Angles in a triangle add to 180°.

Rotational Symmetry

Congruent shapes are shapeswhich are exactly the sameshape and size.

• They can be reflected, rotated or translated.

Congruent Shapes

• Similar shapes are shapes

which have been enlarged by

a scale factor.

They can also be reflected,

rotated or translated.

Area

$$Area = \frac{base \times perpendicular \ height}{2}$$

$$Area = \frac{12 \times 8}{2} = 48cm^2$$

Area

 $Area = base \times perpendicular height$

$$Area = 12 \times 8 = 96cm^2$$

Area

$$Area = \frac{a+b}{2} \times perpendicular \ height$$

$$Area = \frac{6+12}{2} \times 8 = 80cm^2$$

Compound shapes

are made up of two

or more shapes.

To calculate area the shape needs to be split into shapes that are familiar and then added together.

$$12 + 48 = 60 \text{cm}^2$$

Compound Shapes

Perimeter is measured around 3cm the outside of the shape. $3 \times 4 =$ 4cm 12 cm^2

3 + 4 + 9 + 4 + 12 + 8 = 40cm

4cm

9cm

 $12 \times 4 = 48 \text{cm}^2$

12cm

Pythagoras Theorem

Pythagorean Theorem

$$a^2 + b^2 = c^2$$

$$16 + 9 = 25$$

A & B are always the shortest sides.

 $a^2 = 16$

C is always the longest side.

 $c^2 = 25$

$$b^2 = 9$$

$$3^2+4^2=c^2$$

$$9+16=c^2$$

$$25 = c^2$$

$$\sqrt{25}$$
=c c=5cm

$$c=5cm$$

3 cm

Pythagoras Theorem

Pythagorean Theorem

$$a^2 + b^2 = c^2$$

$$16 + 9 = 25$$

 $a^2 = 16$

A & B are always the shortest sides.

C is always the longest side.

 $c^2 = 25$

$$b^2 = 9$$

Circles

$$\pi = 3.14...$$

Pi is the number of times and diameter can fit inside a circumference.

Circumference =
$$\pi d$$

 $\pi \times 10 = 31.42cm$

$$Area = \pi r^2$$

$$\pi \times 5^2 = 78.54cm^2$$

Faces:

Edges:

Vertices:

A square-based pyramid has:

5 vertices

8 edges

5 faces

- Surface area is the area of all of the faces of a 3D shape.
- Volume is the space insideof a 3D shape.

Surface Area & Volume

To calculate volume, find the area of a face and multiply by the depth.

$$60 \times 30 = 1800 \text{cm}^2$$

$$1800 \times 40 = 72000 \text{cm}^3$$

$$0.6 \times 0.3 = 0.18 \text{m}^2$$

$$0.18 \times 0.4 = 0.072 \text{m}^3$$

Converting Length Measurements


```
5km = ? m Need to x 1000 5 x 1000 = 5000m V
120cm = ? m Need to ÷ 100 120 ÷ 100 = 1.2m ✓
```


- A compound measure is a combination of measurements.
- Eg. speed = distance ÷ time

Converting Compound Measures

$$\frac{m}{s}$$
 into $\frac{km}{hr}$

$$1000m = 1km$$

so $1m = \frac{1}{1000}km$

$$3600s = 1hr$$

so $1s = \frac{1}{3600}hr$

$$\frac{\frac{1}{1000}}{\frac{1}{3600}} = \frac{1}{1000} \div \frac{1}{3600}$$

$$\frac{1}{1000} \times \frac{3600}{1} = \frac{3600}{1000}$$

$$10^{\,m}/_{\rm S}$$
 into $^{km}/_{hr}$

$$10 \times 3600 = 36000$$

$$36000 \div 1000 = 36 \frac{km}{hr}$$

- A compound measure is a
 combination of
 measurements.
- Eg. speed = distance ÷ time

Converting Compound Measures

$$\frac{m}{min}$$
 into $\frac{km}{hr}$

$$1000m = 1km$$

so $1m = \frac{1}{1000}km$

$$60\min = 1 \text{hr}$$
so
$$1\min = \frac{1}{60}\text{hr}$$

$$\frac{\frac{1}{1000}}{\frac{1}{60}} = \frac{1}{1000} \div \frac{1}{60}$$

$$\frac{1}{1000} \times \frac{60}{1} = \frac{60}{1000}$$

$$10^{\,m}/_{min}$$
 into $^{km}/_{hr}$

$$10 \times 60 = 600$$

$$600 \div 1000 = 0.6 \frac{km}{hr}$$

Metric & Imperial Conversions

Metric	Imperial
2.5 cm	1 inch
8 km	5 miles
1 m	39 inches
30 cm	1 foot
1 kg	2.2 pounds
4.5 litres	1 gallon
1 litre	1.75 pints

